
ion is the oxidizing agent.¹¹ Possibly the oxidation

of organoboranes can be considered to proceed as indicated. $^{\rm 21}$

Acknowledgment.—The authors wish to thank Professor W. T. Simpson for many stimulating discussions, Professor B. S. Rabinovitch and his students for deuterium assays of vinylsodium, and Mr. Daniel B. Ritter for assistance with the figures. (21) C. H. Bamford and D. M. Newitt, J. Chem. Soc., 695 (1946). SEATTLE, WASHINGTON

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THE UNIVERSITY OF MARYLAND]

The Infrared Spectra of Some Amino Acids

By Asa Leifer¹ and E. R. Lippincott

RECEIVED MARCH 21, 1957

The infrared spectra of some optically inactive amino acids including α - and β -alanine, α -, β - and γ -aminobutyric acids, and N-methylated glycines were obtained using the KBr technique in the region 5000-667 cm.⁻¹. The functional group frequencies have been correlated with the molecular structure of these compounds. The spectrum of betaine hydrate indicates that it is a dipolar ion in the form of a water complex.

Introduction

The infrared spectra of solids can be conveniently obtained from KBr pellets in which finely ground samples have been dispersed.² Koegel, *et al.*,³ using this technique, obtained the spectra of a large number of optically active amino acids. This paper presents some further work on optically inactive amino acids.

The object of this study was (1) to correlate the spectra of optically inactive amino acids including the N-methyl substituted glycines, (2) to see the effect on the spectra of amino acids when the position of the amino group is varied along the chain, and finally (3) to evaluate the structure of betaine hydrate.

Experimental

The spectra were obtained from a Perkin-Elmer Model 112, single beam, double pass infrared spectrometer equipped with a sodium chloride prism. Pellets were prepared by first mixing the amino acid with KBr (J. T. Bakers Analytical Grade) in a Wig-L-Bug Amalgamator for 30 seconds. The resulting mixtures were used to make clear pellets 10 mm. in diameter and approximately 0.5 mm. thick. The procedure for pressing the pellets was essentially the same as described by Kirkland.⁴ In this technique it was found that there was a finite concentration of an amino acid below which a clear pellet could be obtained. However above this concentration the pressed pellet became cloudy, as though excess amino acid forms a solid solution in KBr.

The following substances were obtained from Nutritional Biochemical Co.: glycine, DL- α -amino-*n*-butyric acid, β -alanine, DL-norvaline, DL-norleucine, DL-valine, DL-iso-leucine, DL- β -aminobutyric acid, γ -aminobutyric acid, sarcosine hydrochloride, N,N-dimethylglycine hydrochloride and betaine hydrochloride. The substances DL-alanine, α -amino-isobutyric acid and betaine hydrate were obtained from Eastman Kodak Company.

Results

The amino acids are divided into two groups: I—the straight and branched-chained amino acids and compounds in which the amino group is varied along the chain and II—glycine and N-methyl substituted glycines. The Region 3500-2000 Cm.⁻¹.—Amino acids

The Region 3500-2000 Cm.⁻¹.—Amino acids exhibit a great deal of hydrogen bonding as evidenced by the presence of many broad bands in their spectra, especially in the region 3000–2000 cm.⁻¹. This makes it difficult to differentiate between the C–H and N–H bands. Nevertheless there are a few generalizations which can be made in this region. α -Amino-*n*-butyric acid and α alanine of group I both have broad bands at 2300 and 2262 cm.⁻¹, respectively, which do not appear in the β - and γ -acids. The same is true for the medium bands 3050 and 3042 cm.⁻¹ for the above two acids, respectively.

There is a characteristic band at 2130 cm.⁻¹ which has been tentatively assigned to the N–H stretching in the group $NH_3^{+,3,5}$ Table I also confirms that this band is related to the NH_3^+ group; however, a closer inspection of the data indicates that it may be related to an N-H bending mode rather than an N-H stretching mode. Evidence for this is that in the β -amino acids the absorption peaks are shifted to higher frequencies while the α -amino acids absorb at the normal frequency. This shift may be interpreted on the basis of hydrogen bonding which leads to ring formation. The α -, β - and γ -amino acids could form, respectively, 5-, 6- and 7-membered hydrogen bonded rings. The β -compound would be more stable since it could conceivably form a six-membered ring and as a result the N-H bending mode would have a higher absorption frequency in comparison to the other two types. If this were an N-H stretching mode the reverse would be true and the β -amino acid would absorb at a lower frequency in compari-

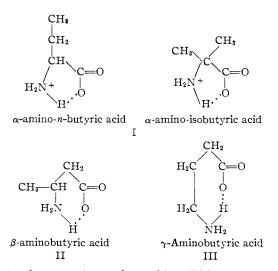
⁽¹⁾ National Institute of Health Fellow, 1955-1956.

^{(2) (}a) U. Scheidt and H. Reinwein, Z. Naturforsch., 76, 270 (1950).
(b) M. M. Stimson and M. J. O'Donnel, THIS JOURNAL, 74, 1805 (1952).

⁽³⁾ R. J. Koegel, J. P. Greenstein, M. Winitz, S. M. Birnbaum and R. A. McCallum, *ibid.*, **77**, 5708 (1955).

⁽⁴⁾ J. J. Kirkland, Anal. Chem., 27, 1537 (1955).

⁽⁵⁾ L. A. Duncanson, J. Chem. Soc., 1753 (1953).


TABLE I												
Absorption Spectra of Some Amino Acids in Wave Numbers												

Very strong intensity (VS) 0% T; strong intensity (S) $0-10$;	medium strong intensity (MS) 10-20;	medium intensity (M) 20-80;	weak intensity (W) 80–96; very weak intens-
---	-------------------------------------	-----------------------------	---

ity (VW) 96-100; shoulder (sh); sharp (sp); broad (B).

				ity	(V W) 90-1	oo; shoulde	er (sn); snai	p(sp); pro	au (D).					
Compound Group 1	Conen mg./g KBr													
DL-Alanine 8-Alanine	4.5 7.6		3042M		2839MB 2860MB	2716M		2584M 2613M(sh)	2500M(sh)		2262WB	2186MB	2114M	
DL-α Amino- <i>n</i> -butyric acid	6.2		3050M		2860M	2740M		2620M	2543(sh)		2300WB	2100WIB	2132M	
α-Amino-isobutyric acid DL-β-Amino-butyric acid	$7.7 \\ 6.2$		3012SB	2955M(sh)	2839MSB 2882MB	2796MB	$2677\mathrm{M}$	2599M(sp) 2599M	2459M(sh) 2495M(sh)	2351 M(sh)		2177M	2090MB	
γ-Aminobutyric acid pl-Norvaline	$7.2 \\ 4.7$			2908SB	2860MB		2686M(sh)	9479(-1-)	2537MB				2146MB 2090MB	
DL-Valine	7.6			2936MB			2686(sh) 2686MB	3472(sh)	2543MB				2139MB	
DL-Norleucine DL-Isoleucine	$3.9 \\ 5.2$			2917SB 2955MB			2664(sh) 2686M	2562(sh) 2555M	2506M(sh)				2104WB 2129MB	
Group II														
Glycine Sarcosine hydrochloride	$7.5 \\ 12.5$	3158M		2955SB	2860MB	2796M	2657M(sh)	2599M	2513M 2495M	2362M			2129MB	1755S(sp)
						2748M	2007101(50)							
N.N-Dimethylglycine hydrochloride	7.0			2890MB		2796M 2716M(sh)		2628M(sh)	2507M	2414M(sh) 2351M(sh)				1734S(sp)
Betaine hydrochloride	7.7			2936M 2993M(sh)		2812M		2628M	2543 M (sh) 2483 M	2425M(sh)				1739S(sp)
Betaine hydrate	7.4	3376M	3098MB	2976M(sh)					- 100112					
Compound Group I	Conen., mg./g. KBr													
^D L-Alanine β-Alanine	4.5 7.6	1625S(sh) 1633MB	1590VS 1575MB		1522M 1507MB		1454M(sp) 1451M	1426M(sp) 1414M(sh) 1405M	1389M	1355S(sp)	1306S(sp) 1331 M	1293 M	1238M 1262MB	
DL-α-Amino-n-butyric acid	6.2		1600VSB		1525MS	1476M	1458M 1446M	1418MS(sp)	1379M(sh)	1354S(sp)	1314VSB	1265M		
α Aminoisobutyric acid	7.7	16395	15758		1544VS		1443M	1412S(sp)		1369S(sp)		1291M(sp) 1272S(sp)		
υ ιβ-Aminobutyric acid	6.2	1644S	1585 1540VSB		1514S		1441S(sp)	1409VW	1377 M	1354M	1331M 1308M	1287M(sp) 1267M(sp)		
γ-Aminobutyric acid	7.2	1639M	1595MS	1559MS	1531MS	1475M	1456M(sp)	1426M	1390MS	1352S(sp)	1325VS(sp)	1207 M(sp) 1292 M 1287 M	1232MS 1254M	
DL-Norvaline	4.7	1653S(sh)	1584VSB		15108		1457M	1421S(sp)	1379M(sh)	1358M(sp)	1333MS 1327MS	1287M 1270M(sp)	1254101	
DL-Valine DL-Norleucine	$7.6 \\ 3.9$	1609S(sh)	1598SB 1581BS(sp)		1502S 1517 M	1473M(sh)	1456M	1417M 1418VS(sp)	1393 M	1356MS(sp)	1339S(sp)	1286M	1237M	
DL-Isoleucine	5.2		1595SB		1499VSB			1416S(sp)	1379M	1363M	1328M(sp) 1310M(sp)			
Group II											1010112(0))			
Clycine	7.5		1616SB		1506SB			1414SB			1331SB			
Sarcosine hydrochloride N.N-Dimethylglycine	$\begin{array}{c} 12.5 \\ 7.0 \end{array}$		1616WB			1477M	1451MS(sp) 1451M	1414MB	1398MS 1384M(sh)		1308VW	1285W		1221SB
hydrochloride Betaine hydrochloride	7.7	1639M				1478M(sp)	146 0 M	1433M 1405M	1375M		1338W(sh)	1289W	1246M	
Betaine hydrate	7.4		1633SB			1489M(sh) 1478MS	1450M(sh) 1440M	1430M 1416M(sh)	1395SB		1327 M 1333S B		1240M(sp)	

										740MB		722MB		693S						
		769MB		757 M B	801M	788S(sp)	758M	776MB			777 MB		M667	772M			778MB	805 M	M 777	
		854M	845M	809VS						850M	820M		827W	807 M (sh)			841VSB	856M 848M	840M	
			885MB	868M	894MB			866WB		(4s) M668	892 M	867 M	891W	873M		893 MSB			883S(sp)	892SB
		917M	943M	928MB			936M	912MB		M606	925WB	924MB	925W	919W		911MB	903MB	600M (sp)	930M (sp)	931MS
					932M			978M			948M	959WB	963M				964M	965M(sp)	950M(sp)	953M
(1017M	M066	1022M	1004W		1006MB	1006W	M066				994WB					1002M	992 MS(sp)	1006W 981M
TABLE I (continued)		1026MB		1040M(sh)			1033MB	1038WB		1036MB	1034MB		1044WB			1033MB		1024M		
TABLE I			1060M	1062MB	1089M			1062WB		1076MB	1066MB	1074MB	1074WB				1046M	1055M	1070WB	
		1114M		1109M			1119M(sp)	1110MB		1118M	1104M	1119M	1102W			1109M				
							1139M(sp)			1130M(sh)	1133M		1132MB			1133M			1131MS	1130W
		1150M	1154MB	1152M				1164MB		1156M		1157M					1161M(sp)	1163MB 1152M		1144W
				6.2	1196S(sp)		6.2 1210MB			1196M	1180M	1193M	1182M				1205SB		1189SB	
	Concn., mg./g. KBr	4.5	7.6	6.2	7.7		6.2	7.2		4.7	7.6	3.9	5.2			7.5	12.5	7.0	7.7	7.4
	Compound Group I	pr.Alanine	β ·Alanine	pr-a-Amino-n-butyric acid	œ∙Amino-isobutyric acid		pr- β -Aminol utyric acid	y-Aminobutyric acid		pr • Norvaline	pl. Valine	pr.Norleucine	pt. Isoleucine		Group II	Glycine	Sarcosine hydrochloride	N,N-Dimethylglycine hydrochloride	Betaine hydrochloride	Betaine hydrate

son to the α - and γ -amino acids. This same type of reasoning has been used to explain the abnormal acidity of *n*-butyric acid in the series formic, acetic, propionic and butyric acid.⁶

It should be noted that amino acids form intermolecular hydrogen bonds in the crystalline state whereas there is no direct experimental proof of intramolecular hydrogen bonding.⁷ However the above data cannot be explained on the basis of intermolecular hydrogen bonding. There are three reasons for conceivably anticipating the presence of intramolecular hydrogen bonds together with the intermolecular type: (1) the concentrate of amino acid used was dilute-0.05 m (2) the amino acid was ground thoroughly in a grinder with KBr and therefore there is a tendency to break up some of the intermolecular hydrogen bonds and allow for the formation of intramolecular bonds and finally (3) the pellet technique may involve the formation of solid solutions as mentioned in the Experimental section.

The Region 2000-1300 Cm.⁻¹.—In this region there is a great deal of similarity in the spectra of the amino acids and as a result a large number of correlations have been made.^{3,8-14} There is an absorption band at 1640–1610 cm.⁻¹ which has been assigned to the NH₃⁺ deformation.¹⁴ Bellamy⁸ states that there is a great deal of confusion with respect to the assignment of this band. Inspection of Table I shows that DL-valine, DL-isoleucine and DL- α -amino-*n*-butyric acid do not absorb in this region. Furthermore betaine hydrochloride shows an absorption peak at 1639 cm.⁻¹; however, this compound is N-trimethylated. More-

(6) J. F. Dippy. J. Chem. Revs., 25, 189 (1939).

(7) J. M. Robertson, "Organic Crystals and Molecules," Cornell University Press, Ithaca, N. Y., 1953, p. 242.

(8) T. J. Bellamy, "The Infrared Spectra of Complex Molecules," Chapter 13, John Wiley and Sons, Inc., New York, N. Y., 1954.

(9) N. Fuson, M. Josien and R. I., Powell, THIS JOURNAL, 74. (1952).

(10) H. W. Thompson, D. L. Nicholson and L. N. Short, Disc. Faraday Soc., 9, 222 (1950).

(11) I. M. Klotz and D. M. Gruen, J. Phys. Colloid Chem., 52, 961 (1948).

(12) H. Lenormant. J. chim. phys., 43, 327 (1946).

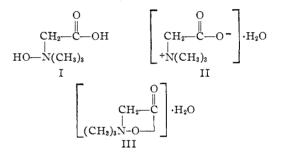
(13) H. Lenormant, Compt. rend. acad. sci. Paris, 222, 1432 (1946).
 (14) H. M. Randall, R. G. Fowler, N. Fuson and J. R. Dangl.

"Infrared Determinations of Organic Structures," D. Van Nostrand Co., Inc., New York, N. Y., 1949, p. 16. over, it does not contain the ionic carboxyl absorption peak to complicate the spectrum. These facts all indicate that the above assignment is doubtful.

The absorption band from 1550-1485 cm.⁻¹ has been assigned to the NH_3^+ acids and the hydro-chlorides.^{9,11,14} From Table I it is seen that all the compounds in group I together with glycine show this peak. The other four compounds in group II do not exhibit absorption here. This is to be expected since they all have methylated amino groups. Furthermore, all the bands are not broad except for glycine, β -alanine and DL-isoleucine indicating that the effect of hydrogen bonding on this deformation frequency is small. The maximum spread between peaks is 32 cm.⁻¹ (from DL-isoleucine to γ -aminobutyric acid, exclusive of α -amino-isobutyric acid) so that the effect of the ionic carboxyl group, as explained for the NH3+ deformation at 2130 cm.-1, cannot be detected. This is due to the experimental error in measuring the peak frequencies.

All the compounds of group I have a strong band near 1600 cm.⁻¹ indicating the existence of the asymmetric ionic carboxyl mode of vibration. The hydrochlorides in group II, on the other hand, do not have this group. Sarcosine hydrochloride shows a weak band at 1616 cm.⁻¹ which could be inherent in the hydrochloride, but it might be due to the presence of a small amount of sarcosine which shows strong absorption at 1616 cm.⁻¹.¹⁴ The second absorption at 1410 cm.⁻¹ arising from

The second absorption at 1410 cm.⁻¹ arising from the symmetric mode of vibration of the ionic carboxyl group is less easy to identify in the infrared spectrum although it appears clearly in many Raman spectra of α -amino acids.^{8,15} All the compounds in Table I show absorption here. This result can be interpreted in two different ways. The presence of the 1410 cm.⁻¹ band in the hydrochlorides may be inherent in hydrochlorides of amino acids with strongly basic methylamino groups. The absorption band for all the other compounds would then be due to the ionic carboxyl group. However if the 1410 cm.⁻¹ band is not inherent in the hydrochlorides then the above assignment is not valid, for the hydrochlorides do not contain ionic carboxyl groups.


All hydrochlorides of group II show strong absorption from 1754–1724 cm.⁻¹ and do not show absorption at 1610 cm.⁻¹. Hence this mode is assigned to the normal carboxyl group. Sarcosine hydrochloride, however, exhibits weak absorption at 1616 cm.⁻¹ and, as stated previously, could be due to a small amount of sarcosine present or, more

(15) J. T. Edsall, J. W. Otvos and A. Rich, THIS JOURNAL. 72, 474 (1950).

likely, it could be a band inherent in sarcosine hydrochloride.

All the compounds in Table I except glycine and isoleucine show absorption from 1438 to 1460 cm.⁻¹ which is due either to the asymmetric C–H deformation of the C–CH₃ group (1450 \pm 20 cm.⁻¹)⁸ or to the –CH₂ deformation (1465 \pm 20 cm.⁻¹).⁸ The absence of this band in glycine and isoleucine probably is due to the fact that there are strong broad absorption bands located at 1414 and 1499 cm.⁻¹, respectively, and consequently have washed out the weaker band.

The Structure of Betaine Hydrate.—Table I shows that betaine hydrate has an absorption band at 3376 cm.⁻¹ which is due to the bonded OH in water. There is also a strong absorption peak at 1633 cm.⁻¹ which is due to an ionic carboxyl group. The possible structures for the hydrate are illustrated below. There is some confusion as to what the structure is. For example Harrow and Mazur¹⁶ indicate that it is either structure I or III. Fruton and Simmons,¹⁷ on the other hand, indicate that the structure is II. Structure I can be eliminated since it should have a normal acid carboxyl frequency near 1725 cm.⁻¹ and no ionic carboxyl mode. Structure III would be analogous to a lac-

tone and would have a carbonyl frequency near 1800 cm.⁻¹. Hence this structure can be eliminated. Structure II is the only structure which is consistent with the spectrum. It has an ionic carboxyl group which would give rise to the COO⁻ mode near 1600 cm.⁻¹. The bonded OH frequency would be due to the associated water. The spectrum does not give any information as to where the water is located. As a result the compound is probably a water complex, the nature of which is not entirely known.

College Park, Md.

⁽¹⁶⁾ B. Harrow and A. Mazur, "Textbook of Biochemistry," W. B. Saunders Co., Philadelphia, Pa., 1954, p. 54.
(17) J. A. Fruton and S. Simmons, "General Biochemistry," John

⁽¹⁷⁾ J. A. Fruton and S. Simmons, "General Biochemistry," John Wiley and Sons, Inc., New York, N. Y., 1953, p. 55.